Skip to main content

Reservoir Geomechanics


This is an archived course. This course is provided as a resource which you are welcome to access as you see fit, but it is not possible to earn a Statement of Accomplishment at this time. If you would like to earn a Statement of Accomplishment, a newer offering may be provided in the future on the Stanford Lagunita course listing page.

About This Course

This interdisciplinary course encompasses the fields of rock mechanics, structural geology, earthquake seismology and petroleum engineering to address a wide range of geomechanical problems that arise during the exploitation of oil and gas reservoirs.

The course considers key practical issues such as prediction of pore pressure, estimation of hydrocarbon column heights and fault seal potential, determination of optimally stable well trajectories, casing set points and mud weights, changes in reservoir performance during depletion, and production-induced faulting and subsidence. The first part of the course establishes the basic principles involved in a way that allows readers from different disciplinary backgrounds to understand the key concepts.

The course is intended for geoscientists and engineers in the petroleum and geothermal industries, and for research scientists interested in stress measurements and their application to problems of faulting and fluid flow in the crust.

Recommended Background:

Introductory Geology and Geophysics
Familiarity with principles of drilling and petroleum production

Course Format:

  • 20, 90 minute lectures (in ~20 minute segments). 2 lectures will be made available each week.
  • Lecture 1 is an overview to introduce the topics covered in the course. Lectures 2-17 follow 12 chapters of Dr. Zoback’s textbook, Reservoir Geomechanics (Cambridge University Press, 2007) with updated examples and applications. Lectures 18 and 19 are on topics related to geomechanical issues affecting shale gas and tight oil recovery. Lecture 20 is on the topic of managing the risk of triggered and induced seismicity.
  • 8 Homework assignments (and associated video modules) are intended to give the class hands-on experience with a number of the topics addressed in the course.
  • The course grade will be based solely on homework assignments. There will be no quizzes or exams.
  • Homework assignments will be graded electronically and will consist of multiple choice and numerical entry responses.
  • There will be an online discussion forum where participants can discuss the content of the course and ask questions of each other and the instructors.

Course Staff

Picture of Mark Zoback

Dr. Mark D. Zoback

Dr. Mark D. Zoback is the Benjamin M. Page Professor of Geophysics at Stanford University. Dr. Zoback conducts research on in situ stress, fault mechanics, and reservoir geomechanics with an emphasis on shale gas, tight gas and tight oil production. He is the Director of the Stanford Natural Gas Initiative and co-Director of the Stanford Center for Induced and Triggered Seismicity. He was one of the principal investigators of the SAFOD project, in which a scientific research well was successfully drilled through the San Andreas Fault at seismogenic depth. He is the author of a textbook entitled Reservoir Geomechanics, published in 2007 by Cambridge University Press. He is the author/co-author of over 300 technical papers and holds five patents. He was the co-founder of GeoMechanics International in 1996, where he was Chairman of the Board until 2008. Dr. Zoback has received a number of awards and honors, including the 2006 Emil Wiechert Medal of the German Geophysical Society and the 2008 Walter H. Bucher Medal of the American Geophysical Union. In 2011, he was elected to the U.S. National Academy of Engineering and in 2012 elected to Honorary Membership in the Society of Exploration Geophysicists. He is the 2013 recipient of the Louis Néel Medal, European Geosciences Union and named an Einstein Chair Professor of the Chinese Academy of Sciences. In 2015, he received the Robert R. Berg Outstanding Research Award of the AAPG and in 2016 he received the Outstanding Contribution to the Public Understanding of the Geosciences Award from AGI. He served on the National Academy of Engineering committee investigating the Deepwater Horizon accident and the Secretary of Energy’s committee on shale gas development and environmental protection.

Picture of Fatemeh Rassouli

Ankush Singh, Graduate Teaching Assistant

Ankush Singh is a 2nd year Ph.D. student in the Department of Geophysics at Stanford University. Ankush works with Professor Mark Zoback to characterize hydraulic stimulation and the distribution of natural fractures in a variety of settings. He is presently working with the Department of Energy (DOE) EGS Collab project, which aims to better understand fracture behaviour in enhanced geothermal systems. Ankush has a Master of Science in Applied Geology from Indian Institute of Technology Bombay. Ankush previously worked for Shell as a Production Geosceintist for 6 years working on integrated reservoir modelling projects at a variety of locations globally.

Picture of Fatimah Al-Ismail

Fatimah Al-Ismail, Graduate Teaching Assistant

Fatimah Al-Ismail is a 2nd year Ph.D. candidate at the Stanford University Department of Geophysics. Fatimah works with Professor Mark Zoback to study elastic anisotropy in shales. Her research has implications for better microseismic location and enhanced reservoir characterization for better understanding of the behavoir of the reservoir during production. Fatimah has a Master of Science in Geophysics from Stanford where she began her work on laboratory characterization of shale anisotropy. Fatimah previously worked for Saudi Aramco for two years before she came to Stanford.

Frequently Asked Questions

Will I receive a Statement of Accomplishment in this course?

Yes. A Statement of Accomplishment will be given to those who obtain more than 70% of the maximum points on the 8 homework assignments.

When will my Statement of Accomplishment arrive?

The Statement of Accomplishment will arrive a few weeks after successful completion of the course.

Do I need to purchase a textbook for the course?

While it is not required to purchase the Reservoir Geomechanics textbook for this course, it is recommended. Lectures 2-17 follow the 12 chapters of the book. The book provides significant additional detail and explanation of the course concepts. It is available through:
Cambridge University Press:
Amazon and Kindle:

  1. Course Number

    ResGeo202 - ARCHIVED
  2. Classes Start

  3. Classes End

  4. Estimated Effort

    ~4-5 hours/week
  5. Price